Estrutura da membrana
Também é chamada de membrana celular, membrana citoplasmática ou plasmalema.
Toda a célula, seja procarionte ou eucarionte, apresenta uma membrana que isola do meio exterior: a membrana plasmática. Esta membrana é tão fina (entre 6 a 9 nm) que os mais aperfeiçoados microscópios ópticos não conseguiram torná-la visível.
Foi somente após o desenvolvimento da microscopia eletrônica que a membrana plasmática pôde ser observada. Nas grandes ampliações obtidas pelo microscópio eletrônico, cortes transversais da membrana aparecem como uma linha mais clara entre duas mais escuras, delimitando o contorno de cada célula.
Constituição química da membrana plasmática
Estudos com membranas plasmáticas isoladas revelam que seus componentes mais abundantes são fosfolipídios, colesterol e proteínas. É por isso que se costumam dizer que as membranas plasmáticas têm constituição lipoprotéica.
A organização molecular da membrana plasmática
Uma vez identificados os fosfolipídios e as proteínas como os principais componentes moleculares da membrana, os cientistas passaram a investigar como estas substâncias estavam organizadas.
O modelo do mosaico fluído
A disposição das moléculas na membrana plasmática foi elucidada recentemente, sendo que os lipídios formam uma camada dupla e contínua, no meio da qual se encaixam moléculas de proteína. A dupla camada de fosfolipídios é fluida, de consistência oleosa, e as proteínas mudam de posição continuamente, como se fossem peças de um mosaico. Esse modelo foi sugerido por dois pesquisadores, Singer e Nicholson, e recebeu o nome de Modelo Mosaico Fluido.
Os fosfolipídios têm a função de manter a estrutura da membrana e as proteínas têm diversas funções. As membranas plasmáticas de um eucariócitos contêm quantidades particularmente grande de colesterol. As moléculas de colesterol aumentam as
propriedades da barreira da bicamada lipídica e devido a seus rígidos anéis planos de esteroides diminuem a mobilidade e torna a bicamada lipídica menos fluida.
Transporte de substâncias pela membrana
A capacidade de uma membrana de ser atravessada por algumas substâncias e não por outras define sua permeabilidade.
Em uma solução, encontram-se o solvente (meio líquido dispersante) e o soluto (partícula dissolvida). Classificam-se as membranas, de acordo com a permeabilidade, em 4 tipos:
a) Permeável: permite a passagem do solvente e do soluto;
b) Impermeável: não permite a passagem do solvente nem do soluto; c) Semipermeável: permite a passagem do solvente, mas não do soluto;
d) Seletivamente permeável: permite a passagem do solvente e de alguns tipos de soluto.
Nessa última classificação se enquadra a membrana plasmática.
A passagem aleatória de partículas sempre ocorre de um local de maior concentração para outro de concentração menor (a favor do gradiente de concentração). Isso se dá até que a distribuição das partículas seja uniforme. A partir do momento em que o equilíbrio for atingido, as trocas de substâncias entre dois meios tornam-se proporcionais.
A passagem de substâncias através das membranas celulares envolve vários mecanismos, entre os quais podemos citar:
Transporte passivo
Osmose
A água se movimenta livremente através da membrana, sempre do local de menor concentração de soluto para o de maior concentração. A pressão com a qual a água é forçada a atravessar a membrana é conhecida por pressão osmótica.
A osmose não é influenciada pela natureza do soluto, mas pelo número de partículas. Quando duas soluções contêm a mesma quantidade de partículas por unidade de volume, mesmo que não sejam do mesmo tipo, exercem a mesma pressão osmótica e são isotônicas. Caso sejam separadas por uma membrana, haverá fluxo de água nos dois sentidos de modo proporcional.
Quando se comparam soluções de concentrações diferentes, a que possui mais soluto e, portanto, maior pressão osmótica é chamada hipertônica, e a de menor concentração de soluto e menor pressão osmótica é hipotônica. Separadas por uma membrana, há maior fluxo de água da solução hipotônica para a hipertônica, até que as duas soluções se tornem isotônicas.
A osmose pode provocar alterações de volume celular. Uma hemácia humana é isotônica em relação a uma solução de cloreto de sódio a 0,9% (“solução fisiológica”). Caso seja colocada em um meio com maior concentração, perde água e murcha. Se estiver em um meio mais diluído (hipotônico), absorve água por osmose e aumenta de volume, podendo romper (hemólise).
Se um paramécio é colocado em um meio hipotônico, absorve água por osmose. O excesso de água é eliminado pelo aumento de frequência dos batimentos do vacúolo pulsátil (ou contrátil).
Protozoários marinhos não possuem vacúolo pulsátil, já que o meio externo é hipertônico.
A pressão osmótica de uma solução pode ser medida em um osmômetro. A solução avaliada é colocada em um tubo de vidro fechado com uma membrana semipermeável, introduzido em um recipiente contendo água destilada, como mostra a figura.
Por osmose, a água entra na solução fazendo subir o nível líquido no tubo de vidro. Como no recipiente há água destilada, a concentração de partículas na solução será sempre maior que fora do tubo de vidro. Todavia, quando o peso da coluna líquida dentro do tubo de vidro for igual à força osmótica, o fluxo de água cessa. Conclui-se, então, que a pressão osmótica da solução é igual à pressão hidrostática exercida pela coluna líquida.
Difusão
Consiste na passagem das moléculas do soluto, do local de maior para o local de menor concentração, até estabelecer um equilíbrio.
É um processo lento, exceto quando o gradiente de concentração for muito elevado ou as distâncias percorridas forem curtas. A passagem de substâncias, através da membrana, se dá em resposta ao gradiente de concentração.
Difusão Facilitada
Certas substâncias entram na célula a favor do gradiente de concentração e sem gasto energético, mas com uma velocidade maior do que a permitida pela difusão simples.
Isto ocorre, por exemplo, com a glicose, com alguns aminoácidos e certas vitaminas. A velocidade da difusão facilitada não é proporcional à concentração da substância. Aumentando-se a concentração, atinge-se um ponto de saturação, a partir do qual a entrada obedece à difusão simples. Isto sugere a existência de uma molécula transportadora chamada permease na membrana.
Quando todas as permeases estão sendo utilizadas, a velocidade não pode aumentar. Como alguns solutos diferentes podem competir pela mesma permease, a presença de um dificulta a passagem do outro.
Transporte Ativo
Neste processo, as substâncias são transportadas com gasto de energia, podendo ocorrer do local de menor para o de maior concentração (contra o gradiente de concentração).
Esse gradiente pode ser químico ou elétrico, como no transporte de íons. O transporte ativo age como uma “porta giratória”. A molécula a ser transportada liga-se à molécula transportadora (proteína da membrana) como uma enzima se liga ao substrato. A molécula transportadora gira e libera a molécula carregada no outro lado da membrana.
Gira, novamente, voltando à posição inicial. A bomba de sódio e potássio liga-se em um íon Na+ na face interna da membrana e o libera na face externa. Ali, se liga a um íon K+ e o libera na face interna. A energia para o transporte ativo vem da hidrólise do ATP.
Acesse o link para a atividade
https://forms.gle/zwA361THcfFrz9zb6